Extremal problems— Examples

Proposition 1. If G is an n-vertex graph with at most n-2 edges then G is disconnected.

Proof. By induction on e(G) prove that every graph G has at least n(G) - e(G) components.

A Question you always have to ask:

Can we improve on this proposition?

Answer. NO! The same statement is FALSE with n-1 in the place of n-2. Proposition 1 is *best possible*, because P_n has n-1 edges and is not disconnected.

Proposition 2. If G is an n-vertex graph with at least n edges then G contains a cycle.

Proof: Induction. + **Lemma.** If every vertex of a multigraph G has degree at least 2, then G contains a cycle.

Remark. Proposition 2 is also best possible, (e.g. P_n).

Proposition 1. + Remark:

 $\min\{e(G): G \text{ is connected}, v(G)=n\}=n-1.$

Proposition 2. + Remark:

 $\max\{e(G): G \text{ is acyclic}, v(G) = n\} = n - 1.$

Extremal problems: Connectivity_____

Vague description: An extremal problem asks for the maximum or minimum value of a parameter over a class of graphs (or other discrete structures).

Question: What is the smallest possible minimum degree that GUARANTEES connectivity?

Conjecture by Construction $K_{\lfloor n/2 \rfloor} + K_{\lceil n/2 \rceil}$ is disconnected and has "large" minimum degree ($\lfloor n/2 \rfloor - 1$). Is this best possible?

Def. Graph G + H is the disjoint union (or sum) of graphs G and H.

Proposition. If G is an n-vertex graph with $\delta(G) \geq \frac{n-1}{2}$, then G is connected.

Prop. + Construction:

 $\max\{\delta(G): G \text{ disconnected}, v(G)=n\}=\lfloor \frac{n}{2} \rfloor -1.$

Extremal problems: Hamiltonicity____

Hamilton cycle: a cycle going through all vertices of graph G. G is Hamiltonian: G contains a Hamilton cycle

Examples: Dodecaeder graph, Petersen graph

Remark. Hamiltonicity is difficult to decide; special case of Travelling Salesman Problem (TSP)

Question. How much larger min-degree *forces* Hamiltonicity than connectivity? Not much more!

Dirac's Theorem If G is an n-vertex graph with $\delta(G) \ge \frac{n}{2}$, then G is Hamiltonian.

Proof. Take longest path and prove that there is a cycle spanning all its vertices. Conclude this must be a Hamilton cycle otherwise the path can be lengthened.

Remark. The above proposition is *best possible*, as $K_1 \vee (K_{\lfloor (n-1)/2 \rfloor} + K_{\lceil (n-1)/2 \rceil})$ has minimum degree $\lfloor (n-1)/2 \rfloor$ and no Hamilton cycle.

Graph $G \vee H$ is the join of graphs G and H: take G + H and add all edges between V(G) and V(H).

Extremal Problems_____

graph	graph	type of	value of
property	parameter	extremum	extremum
connected	e(G)	min	n-1
acyclic	e(G)	max	n-1
disconnected	$\delta(G)$	max	$\left\lfloor rac{n}{2} ight floor - 1$
non-Hamiltonian	$\delta(G)$	max	$\left\lfloor \frac{n-1}{2} \right\rfloor$
K_3 -free	e(G)	max	$\left\lfloor \frac{n^2}{4} \right\rfloor$

Triangle-free subgraphs

Theorem. (Mantel, 1907) The maximum number of edges in an n-vertex triangle-free graph is $\lfloor \frac{n^2}{4} \rfloor$.

Proof.

- (i) There is a triangle-free graph with $\lfloor \frac{n^2}{4} \rfloor$ edges.
- (ii) If G is a triangle-free graph, then $e(G) \leq \lfloor \frac{n^2}{4} \rfloor$.

Proof of (ii): estimate edges of a K_3 -free graph by summing up degrees of the vertices in the complement the neighborhood of a maximum degree vertex